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: This Workshop on Large-scale Mathematical Programs reflects
the active research taking place in many parts of the world along
a very broad front-- namely!

(1) on the theory of solution,

S(2 on software development)

() on experiments on representative problems,

( )on application to real problems

(!) on matrix input generators,'
(;) on matrix analyzers;

( ) on output report generators )

(8) on alternative methods of formulation.

This paper is a historical review of the author's interest
in one important facet of this field - namely the solution of
time-staged programs. Indeed it was dynamic L.P. that initiated
the linear programming field back in 1947. Over the years, many
good ideas have been proposed, some that still merit serious con-
sideration. This Workshop may provide the answer to the question
whether or not we have begun at.last to achieve the efficiency
of solution necessary for successful application.
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good ideas have been proposed, some that still merit serious con-
sideration. This Workshop may provide the answer to the question
whether or not we have begun at last to achieve the efficiency
of solution necessary for successful application.



TIME-STAGED METHODS IN LINEAR PROGRAMMING
COMMENTS AND EARLY HISTORY

This paper is a more polished version of the talk which I
delivered opening the International Institute for Applied Systems
Analysis Workshop on Large-Scale Linear Programming at Laxenburg
Austria, June 2-6, 1980. Except for a short review of large-
scale methods also presented, but omitted here, my perspective is
historical.

TIME-STAGED STAIRCASE SYSTEMS

The first formal papers about the new field of linear pro-
gramming (that started in 1947) appeared in Econometrica July-
October 1949. At the very beginning, the emphasis was on solving
time-staged (dynamic) linear programs, That this is so, is clear
from the following quote from [1)-:

This paper is concerned with improved techniques of program
planning, particularly as they apply to the scheduling of
activities over time within an organization or economy in
which the activities must share in the use of limited amounts
of various commodities. The contemplated use of electronic
computers for rapidly computing programs and the assumptions
underlying the mathematical model are discussed. The paper
is concluded by an illurcrative example, (Berlin Airlift, A
Time-Staged Dynamic Lit.ear Program).

The Mathematical Model discussed here is a generalization
of the Leontief Inter-Industry Model. It is closely related
to the one found in von Neumann's paper "A Model of General
Economic Equilibrium". Its chief points of difference lie
in its emphasis on dynamic, rather than equilibrium or steady
states. Its purpose is close control of an organization--
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hence it must be quite detailed; it is designed to handle
highly dynamic problems--hence greater emphasis on time
lags and capital equipment; it takes into consideration the

many different ways of doing things--hence it explicitly
introduces alternative activities; and it recognizes that

any particular choice of a dynamic program depends on the
"objectives" of the "economy",--hence the selection and

types of activities are made to depend on the maximization

of an objective function.

In the companion paper (21, the time staged staircase model

is displayed and its relationship to Leontief Input-Output model

and continuous-time models is discussed:

a(l)X (,I ah)

-u12 )x (1) +a (2) x( 2)  a.. . . . = (2 )

• a (2 ) (2 ) + a 3 ) (3 ) .. . ..3 )

..............................................................

_a(T-1)i(T-1) +aC(T)x(T) - a(T)

Y ()x + +Y(T) x (T) -max,

where the x(t) are vectors of nonnegative elements.

When the matrices a(t) and (t) (t=l,2,...,T) are square
and nonsingular, a direct solution is possible that may lead,
however, to negative and nonnegative activity levels (in
which case no feasible solution exists).

It should be noted that the general mathematical problem
reduces in the linear programming case to consideration of
a system of equations of nonnegative variables whose matrix
of coefficients is composed mostly of blocks of zeros except
for submatrices along and just off the "diagonal". Thus any
good computational techniquc for solving programs would prob-
ably take advantage of this fact.

Having formulated the time-staged model, it soon became clear
that the techniques at hand at the time were inadequate. In a
companion paper [3], first presented in 1949, appeared the follow-

~ing statement:

Computing techniques are now available for solution of small
linear programming problems. However, for accurate cver-all
Air Force planning, the size of the required model is such

that conventional punched card computing equipment, or even
the interim electronic computer being built for the Air Force

by the National Bureau of Standards, is not sufficiently
powerful to cope satisfactorily with the problem of choosing
the optimum activities and activity levels over time.
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In order to obtain a programming procedure which would be
immediately useful with presently available computing equip-
ment, we have been forced to use a determinate, and hence
less general formulation of the programming problem that
parallels closely the staff procedure.

Activities

Exogenous X (t) t) t) X(t)
12 3 4

t=2 Initial
t=3
t-4

t=l
t-2
t-3
t-4

t-1

t-2
t-3
t-4

t-1
t-2
t-3
t-4

We have called this a triangular model because in it the
matrix of detached coefficients, when arragned as in the
Table, and omitting the "initial" part, assumes a trian-
gular form, with all coefficients above and to the right
of the principal diagonal being zero. Thus the activities
and items are so ordered that the levels of any one activ-
ity over time depend only on the levels of the activities
which precede it in the hierarchy. This means that in the
computation of the program we successively work down the
hierarchy, at each step solving completely for the levels
of each activity in each of the time periods before pro-
ceeding to the next activity (see figure above).

The triangular model technique is a powerful empirical method
when there is a natural hierarchy of activities and output items.
Certain energy models, for example, currently in vogue use such
an approach.
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BLOCK TRIANGULARITY

My paper [41, is my first on methods for solving large sys-
tems:

With the growing awareness of the potentialities of the
linear programming approach to both dynamic and static
problems of industry, of the economy, and of the military,
the main obstacle toward full application is the inability
of current computational methods to cope with the magnit-
ude of the technological matrices for even the simplest
situations. However, in certain cases, such as the now
classical Hitchcock-Koopmans transportation model, it has
been possible to solve the linear inequality system in
spite of size because of simple properties of the system.
This suggests that considerable research be undertaken to
exploit certain special matrix structures in order to fac-
ilitate ready solution of larger systems.

Indeed, recent computational experience has made it clear
that standard techniques such as the simplex algorithm,
which have been used to solve successfully general systems
involving one hundred equations (in any reasonable number
of nonnegative unknowns), are too tedious and lengthy to
be practical for extensions much beyond this figure. Our
purpose here will be to develop short-cut computational
methods for solving an important class of systems whose
matrices may be generally described as "block triangular".

By "block" triangular we mean that if one partitions the
matrix of coefficients of the technology matrix into sub-
matrices, the submatrices (or blocks) considered as ele-
ments form a triazngular system,

A AA

A 21 A 22

ATi AT2 .... ATT

For example, von Neumann, in considering a constantly ex-
panding economy, developed a linear dynamic model whose
matrix of coefficients may be written in the form,

A

-B A

-B A.

-8 A

where A is the submatrix of coefficients of activities in-
itiated in period t, and B is the submatrix of output co-
efficients of these activities in the following period.
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Now the main obstacle toward the full application of stan-
dard linear programming techniques to dynamic systems is
the magnitude of the matrix for even the simplest situations.
For example, a trivial 15-activity--7-item static model,
when set up as a 12-period dynamic model, would become a
180-activity by 84-item system, which is considered a large
problem for application of the standard simplex method. A
fancy model involving, say, 200 activities and 100 items
for a static case would become a 2000 x 1000 matrix if re-
cast as a 10-period model. It is clear that dynamic models
must be treated with special tools if any progress is to be
made toward solutions of these systems.

From a computational point of view, there are a number of
observed characteristics of the dynamic models which are
often true for static models as well.
These are:
(1) The matrix (or its transpose) can be arranged in tri-

angular form
(2) Most submatrices Aij are either zero matrices or com-

posed of elements, most of which are zero.
(3) A basis for the simplex method is often block trian-

gular with its diagonal submatrices square and non-
singular (referred to as a "square block triangular"
basis).

(4) For dynamic models similar type activities are likely
to persist in the basis for several periods.

To illustrate, consider a dynamic version of the Leontief
model in which (a) alternative activities are permitted
(a simple case would be where steel can be obtained from
direct production or storage); (b) inputs to an activity
for production in the tth time period may occur in the same
or earlier time periods. It can be shown in this model that
(a) a basic solution will have exactly m activities in each
time period (where m - number of time dependent equations),
(b) each shift in basis will bring in a substitute activity
in the same time period, and (c) optimization can be carried
out as a sequence of one-period optimization problems; i.e.,
the optimum choice of activities (but not their amounts) can
be determined for the first time period (independent of the
later periods) this permits a determination for the second
time period (independent of the later periods), et cetera.

When flow models are replaced with more complex models which
include initial inventories, capacities, and the building
of new capacities, the ideal structure of a basis (see third
characteristic above) no longer holds. However, tests (car-
ried on since 1950) on a number of cases indicate that bases,
while often not square block triangular in the sense above,
could be made so by changing relatively few columna in the
basis (e.g., one or two activities in small models). This
characteristic of near-square block triangularity of the
basis, i.e., with nonsingular square submatrices down the
diagonal, is, of course, computationally convenient and this
paper will be concerned with ways to exploit it.
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Towards the end of the above paper can be found the following:

Finally, may I make a short plea that linear programmers
pay greater attention to special methods for solving the
larger matrices that are encountered in practice. The ex-
cellent work of Jacobs on the caterer problem and the work
of Jacobs, Hoffman, Johnson on the production smoothing
problem are examples of what may be done with certain dyn-
amic models with a simple repetitive structure. Cooper and
Charnes have employed in their work a number of short cuts
that have permitted resolution of certain large scale sys-
tems. At RAND we have found efficient ways to hand compute
generalized transportation problems, and Markowitz has pro-
posed a general procedure in this area that is promising.
Many models exhibit a block triangular structure and cer-
tain partitioning methods have been proposed which take
advantage of this type of structure. There is need for
those of you who are foresighted to do serious research in
this area.

At the present time (1955), it is possible to solve rapidly
problems in the order of a hundred equations. The Orchard-
Hays 701 Simplex Code has solved many problems of this size
with as high as 1,500 unknowns and machine times of five to
eight hours as a rule--all with excellent standards of ac-
curacy. However, it is self-evident that no matter how much
the general purpose codes are perfected they will be unable
to cope with the next generation of problems which will be
larger in size. It is also evident that the models currently
being run could have been handled more effectively by the
proposed special methods.

There are certain characteristics common to many models
which I believe should be emphasized:
(1) Most factors in the coefficient matrix are zero.
(2) In dynamic structures the coefficients are often

the same from one time period to the next.
(3) In dynamic solutions the activities employed often

persist from one period to the next.
(4) Transportation type submatrices are common.
(5) Block triangular submatrices are common.

Part of the research in this area should certainly be de-
voted to a better understanding of the potentialities of
techniques other than the simplex method.

UNCERTAINTY

In a related paper [5], published in 1956, appears the following

In the past few months there have been important developments that
point to the application of linear programing methods under
uncertainty. By way of background let us recall that there
are in common use two essentially different types of sched-
uling applications--one designed for the short run and those
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for the long run. For the latter the effect of probabilistic

or chance events is reduced to a minimum, by the usual tech-
nique of providing plenty of fat in the system. For example,
consumption rates, attrition rates, wear-out rates are all
planned on the high side. Times to ship, time to travel,
times to produce are always made well above actual needs.
Indeed, the entire system is put together with plenty of
8sack and fat with the hope that they will be the shock
absorbers which will permit the general objectives and tim-
ing of the plan to be executed in spite of unforeseen events.
In the general course of things, long-range plans are re-
vised frequently because the stochastics elements of the
problem have a nasty way of intruding. For this reason also
the chief contribution, if any, of the long-range plan, is
to effect an immediate decision--such as the aRpropiation
of funds or the initiation of an important development con-
tract.

For short-run scheduling, many of the slack and fat tech-
niques of its long-range brother are employed. The princi-
ple differences are attention to detail and the short time-
horizon. As long as capabilities are well above require-
ments (or demands) or if the demands can be shifted in time,
this approach presents no problems since it is feasible to
implement the schedule in detail. However, where there are
shortages, the projected plan based on such techniques may
lead to actions far from optimal, whereas these new methods,
where applicable, may result in considerable savings. I
shall substantiate this later by reference to a problem of
A. Ferguson on the routing of aircraft.

With regard to the possibilities of solving large scale lin-
ear programming problems, one can sound both an optimistic
and a pessimisticnote.. The pessimistic note concerns the
ability of the problem formulator, either amateur or profes-
sional, to develop models that are large scale. The pessi-
mistic note also concerns the inability of the problem sovler
to compute models by generaL techniques when they are large
scale. If this is so, is not the great promise that the lin-
ear programming approach will solve scheduling and long range
planning problems with substantial savings to the organizations
adopting these methods but an illusion and a snare? Are the
big problems going to be solved as they have always been
solved--by a detailed system of on-the-spot somewhat natural
set of priorities that resolve every possible alternative as
it arises?

The status of problems involving uncertainty as far as prac-
tical solutions are concerned, has not changed much since 1956.
The following, sums up the 1965 situation:

When one considers instead, a direct attack on uncertainty
via mathematical programming, it inevitably leads to the con-
sideration of large-scale systemc. Problems with their struc-
ture, have proven difficult of solution so far. I believe
that they will be the subject of intensive investigation in
the future.
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DECOMPOSITION PRINCIPLE

The Decomposition Principle [61 arose in 1958 in connection
with a military tactical problem which was too large to handle by
conventional linear programming problem. A good summary of the
approach can be found in my 1965 survey article:

Recently the author, jointly with Philip Wolfe, developed
a new procedure that is particularly applicable to angular
systems and multistage systems of the staircase type
This is reported in preliminary form in RAND P-1544 (Nov.10,
1958) under the title, "A Decomposition Principle for Linear
Programs'.'. The system consists of certain goods shared in
common among several parts and certain goods (including fac-
ilities, raw materials) peculiar to each part. In short the
system is angular in structure.

Although the entire procedure is one intended to be carried
out internally in an electronic computer it may also be viewed
as a decentralized decision making process. Each indepen-
dent part initially offers a possible bill of goods (a vec-
tor of the common outputs and supporting inputs including
outside costs) to a central coordinating agency. As a set
these are mutually feasible with each other and the given
common resources and demands from outside the system. The
coordinator works out a system of "prices" for paying for
each component of the vector plus a special subsidy for
each part that just balances the cost.

The management of each part then offers, based on these
prices, a new feasible program for his part with lower cost
without regard to whether it is feasible for the system as
a whole. The coordinator, however, combines these new offers
with the set of earlier offers so as to preserve mutual fea-
sibility and consistency with exogeneous demand and supply
and to minimize cost. Using the improved over-all solution
he generates a revised set of prices, subsidies, and receives
new offers. The essential idea is that old offers are never
forgotten by the central agency (unless using "current"
prices they are unprofitable); the former are mixed with the
new offers to form new prices.

In the original paper [61 appears this abstract:

A technique is presented for the decomposition of a linear
program that permits the problem to be solved by alternate
solutions of linear sub-programs representing its several
parts and a coordinating program that is obtained from the
parts by linear transformations. The coordinating program
generates at each cycle new objective forms for each part,
and each part generates in turn (from its optimal basic fea-
sible solutions) new activities (columns) for the intercon-
necting program. Viewed as an instance of a 'generalized
programming problem' whose columns are drawn freely from
given convex sets, such a problem can be studied by an ap-

propriate generalization of the duality theorem for linear

-J[
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programming, which permits a sharp distinction to be made
between those constraints that pertain only to a part of the
problem and those that connect its parts. This leads to a
generalization of the Simplex Algorithm, for which the de-
composition procedure becomes a special case.

The reported experience with solving structured linear pro-
grams by means of the decomposition principle varies from very
good to poor, In general it appears that if the decomposition
between master and sub is a "natural" one, it car, perform very
well. Like the simplex method, there is rapid improvement for the
early iterations followed by a long tail except here the tail is
much longer.

COMPACT BASIS INVERSES

From 1962 onwards there has been growing interest in schemes
for compactly representing the inver-se of the basis for the simplex
method. This effort goes under various names: compact basis tri-
angularization, LU basis factorization. One must worry not only
about the compactness but also about the stability of the solution
to small changes in the original data. My 1962 paper [71 was dir-
ected to finding a compact representation of a basis for staircase
systems.

Alex Orden was the first to point out that the inverse of
the basis in the simplex method serves no function except
as a means for obtaining the representation of the vector
entering the basis and for determining the new price vector.
For this purpose one of the many forms of "substitute in-
verses" (such as the well known product form of the inverse)
would do just as well and in fact may have certain advan-
tages in computation.

Harry Markowitz was interested in developing, for a sparse
matrix, a substitute inverse with as few nonzero entries as
possible. He suggested several ways to do this approximately.
For example, the basis could be reduced to triangular form
by successively selecting for pivot position that row and
column whose product of nonzero entries (excluding the pivot)
is minimum. He also pointed out that, for bases whose non-
zeros appear in a band on a staircase about the diagnonal,
proper selection of pivots could result in a compact sub-
stitute with no more nonzeros than the original basis.

We shall adopt Markowitz's suggestion. However, instead of
recording the successive transformations of one basis to the
next in product form, we shall show that it is efficient to
generate each substitute inverse in turn from its predeces-
sor. The substitute inverse remains compact, of fixed size.
Thus "reinversions" are unnecessary (except in so far as
they are needed to restore loss of accuracy due to cumula-
tive round-off error).

The procedure which we shall give can be applied to a gen-
eral m x m basis without special structure. As such, it is



.......... ~

-10-

probably competitive with the standard product form, for it
may have all of its advantages and none of its disadvantages.
With certain matrix structures, moreover, it appears to be
particularly attractive.

We shall focus our remarks on staircase structures. The
reader will find no difficulty in finding an equally effi-
cient way to compact block-angular structures.

STATUS AS OF 1967

A summary of the status of solving large-acale problems can
be found in my 1967 paper [8].

From its very inception, it was envisioned that linear pro-
gramming would be applied to very large, detailed models of
economic and military systems. Kantorovitch's 1939 propos-

als, which were before the advent of the electronic computer,
mentioned such possibilities. Linear programming evolved out
of the U.S. Air Force interest in 1947 in finding optimal
time-staged deployment plans in case of war; a problem whose
mathematical structure is similar to that of finding an op-
timal growth pattern of a developing economy and similar to
other control problems. Structurally the dynamic problems
are characterized in discrete form by staircase matrices
representing the inputs and outputs from one time period to
the next. Treated as an ordinary linear program, the number
of rows and columns grows in proportion to the number 3f
time periods T and the computational effort grows by T and
possibly higher. This fact has limited the use of linear
programming as a tool for planning over many time periods.

At the present 1967 stage of the computer revolution, there
is grojing interest on the part of practical users of linear
programming models to solve larger and larger systems. Such
applications imply that eventually automated systems will
obtain information from counters and sensing devices, pro-
cess data into the proper form for optimization and finally
implement the results by control devices. There has been
steady progress in this mechanization of flow to and from
the computer. Hitherto, this has been one of the obstacles
encountered in setting-up and solving large-scale systems.
The second obstacle has been the cost and the time required
to successfully solve large problems.

It is difficult to measure the potential of large-scale
planning. Certain developing countries appear, according
to optimal calculations on simplified models to be able to
grow at the rate of 15% per year implying a doubling of
their industrial base in five years. But administrators
apparently ignore plans and make decisions based on polit-
ical expediency which restrict growth to 2 or 3% or some-
times -2%. It is the belief of the author that the mech-
anization of data flow (at least in advanced countries) in
the next decade will provide pathways for constructing
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large models and the effective implementation of the results
of optimization. This application of mathematics to decision
processes will eventually become as important as the classical
applications to physics and will, in time, change the emph-
asis in pure mathematics.

In this paper the following unsolved problem was posed:

It has been discovered recently that the size of the inverse
representation of the basis in the simplex method could have
an important effect on running time. Therefore, compact-
inverse schemes along the lines first proposed by Harry
Markovitz of RAND have become increasingly important. Re-
cently, two groups working independently, developed this
approach with astounding results. For example, the Standard
Oil Company of California group reports running-time on some
of their typical large problems cut to 1/4.

How to find the most compact inverse representation of a
sparse matrix is still an unsolved problem:

CONJECTURE: If a non-singuZar matrix has K non-zero elements,
it is always possible to represent them as a pro-
duct of elementary matrices such that the total
number of non-zero entries (excluding their di-
agonal unit elements) is at most K. ( Incidentally,
the empiricaZ schemes just mentioned often have
no more than K+1OK non-zeros in the inverse re-
presentation. ]

STATUS TO THE PRESENT (1980)

From 1967 onwards there has been an increasing interest in
techniques for solving large-scale linear programs. A number of
conferences have been exclusively concerned with the topic. Most
general operations research and management science meetings have
at least one session devoted to it. A selected reference list
which I use in my seminars (mostly published during the period
1970-78) contain 237 titles which I have arranged by sub area.

General Books 20
(10 exclusively large scale, 2 sparse methods, 8 other)
Survey articles 12

GUB, G-GUB and the decomposition principle 15
Variants of above 19
Block Triangularity 3
Linear optimal control and dynamic systems 14
Nested decomposition 4
Column generation, convex and nonlinear programs 34
Sparse matrix techniques 10
Large networks and related problems 37

Applications 52
Software 17

Total 237
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Some idea of the recent research of the Systems Optimization
Laboratory of the Operations Research Department at Stanford can
be gleaned from the titles that follow:

Andre Perold: "Fundamentals of a Continuous Time
Simplex Method".

Andre Perold and George B. Dantzig: "A Basis Factor-
ization Method for Block Triangular Linear Programs".

Bob Fourer: "Solving Staircase-structured Linear
Programs by Adaptation of the Simplex Method".

Ron Davis: "New Jump Conditions for State Constrained
Optimal Control Problems".

Philip Abrahamson and George B. Dantzig: "Imbedded
Dual Decomposition Approach to Staircase Systems".

John Birge: "Solving Staircase Systems under Uncertainty".

This Workshop may well mark the point in time when efficient
methods for solving large dynamic systems may be more than just a
promise. Thirty three years from the time the hope was first ex-
pressed that such methods be found, they may soon become a reality!

. . ...
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